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Abstract— In blind hyperspectral unmixing (HU), the
pure-pixel assumption is well-known to be powerful in enakihg
simple and effective blind HU solutions. However, the pure-

pixel assumption is not always satisfied in an exact sense,

especially for scenarios where pixels are heavily mixed. Ithe

unmixing (HU) is one of the topics that has aroused much
interest not only from remote sensing [3], but also from othe
communities recently [4]-[7]. Simply speaking, the prable

of blind HU is to solve a problem reminiscent of blind source

no pure-pixel case, a good blind HU approach to consider is Separation in signal processing, and the desired outcome is

the minimum volume enclosing simplex (MVES). Empirical

to unambiguously separate the endmember spectral sigsatur

experience has suggested that MVES algorithms can perform and their corresponding abundance maps from the observed

well without pure pixels, although it was not totally clear why
this is true from a theoretical viewpoint. This paper aims to

address the latter issue. We develop an analysis framework

wherein the perfect endmember identifiability of MVES is

hyperspectal scene, with no or little prior information bét
mixing system. Being given little information to solve the
problem, blind HU is a challenging—but also fundamentally

studied under the noiseless case. We prove that MVES is indgte intriguing—problem with many possibilities. Readers age r
robust against lack of pure pixels, as long as the pixels do ferred to some recent articles for overview of blind HU [3],

not get too heavily mixed and too asymmetrically spread. The

theoretical results are supported by numerical simulationresults.

Index Terms— Hyperspectral unmixing, minimum volume
enclosing simplex, identifiability, convex geometry, pixepurity
measure

|. INTRODUCTION

[4], and here we shall not review the numerous possible ways
to perform blind HU. The focus, as well as the contribution,
of this paper lie in addressing a fundamental questionrayisi
from one important blind HU approach, namely, the minimum
volume enclosing simplex (MVES) approach.

Also called simplex volume minimization or minimum vol-
ume simplex analysis (MVSA) [8], the MVES approach adopts
a criterion that exploits the convex geometry structurethef
observed hyperspectral data to blindly identify the endivem

Signal, image and data processing for hyperspectral ingagighectral signatures. In the HU context the MVES concepts
has recently received enormous attention in remote sefsing \yere first advocated by Craig back in the 1990's [9], although
[2], having numerous applications such as environmentatmq; s interesting to note an earlier work in mathematical
itoring, land mapping and classification, and object deteggoiogy [10] which also described the MVES intuitions; see

tion. Such developments are made possible by exploiting

o [4] for a historical note of convex geometry, and the

unique features of hyperspectral images, most notablys tgsterences therein. In particular, Craig's work propodes t
high spectral resolutions. In this scope, blind hyperspéctse of simplex volume as a metric for blind HU, which is
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later used in some other blind HU approaches such as simplex
volume maximization [11]-[13] and non-negative matrix-fac
torization [14]. The MVES criterion is to minimize the volem

of a simplex, subject to constraints that the simplex emsos
all hyperspectral data points. This amounts to a nonconvex
optimization problem, and unlike the simplex volume maxi-
mization approach we do not seem to have a simple (closed-
form) scheme for tackling the MVES problem. However,
recent advances in optimization have enabled us to handle
MVES implementations efficiently. The works in [8] and [6]
independently developed practical MVES optimization algo
rithms based on iterative linear approximation and alténga
linear programming, respectively. The GPU-implementatid

the former is also considered very recently [15]. In additio
some recent MVES algorithm designs deal with noise and
outlier sensitivity issues by robust formulations, suchtlzes

soft constraint formulation in SISAL [16] and the chance-
constrained formulation in [17]; the pixel elimination rhetl



in [18] should also be noted. We should further mention thaf appropriate dimension, resg,; denotes a unit vector whose
MVES also finds application in analytical chemistry [19]jth element isle;]; = 1 and jth element isle;]; = 0 for all
and that fundamentally MVES has a strong link to stochastjc# i.
maximume-likelihood estimation [20].

What makes MVES special is that it seems to perform well Il. PROBLEM STATEMENT
even.in the absencg of pure pixels, i.e., pixels that ardysole In this section we review the background of the MVES
contrlb_uted .by a_smgle endmember. To be more accureﬁtc?entifiability analysis challenge.
extensive simulations found that MVES may estimate the
ground-truth endmembers quite accurately in the noiseless
case and without the pure-pixel assumption; see, e.g[2@8], A- Preliminaries
[21]. At this point we should mention that while the pureqlix  Before describing the problem, some basic facts about
assumption is elegant and has been exploited by some otiatplex should be mentioned. A convex hull
approaches, such as simplex volume maximization (also [7] N
for a more recent Wprk on near—separat_)le non—negatlvexnatrlconv{bl7 by} = {w _ Z 0,b;
factorization), to arrive at remarkably simple blind HU @lg —
rithms, it is also an arguably restrictive assumption inegah y i
In the HU context it has been suspected that MVES sholif'€"€b1,...,by € R™, M > N — 1, is called an(N —1)-
be resistant to lack of pure pixels, but it is not known to whaimensional simplex ifb,, ..., by are affinely independent.
extent MVES can guarantee perfect endmember identifibilif '€ Volume of a simplex can be determined by [24]
under no pure pixels. Hence, we depart from existing MVES 1 P
works, thzarein improved algorithm designs are usually the vol(conv{by, ..., bn}) = (N —1)! det(BTB), (1)
theme, and ask the following questions: can the endmember ~ _ Mx(N—1)
identifiability of the MVES criterion in the no pure-pixel sa whereB = [b1—by,by~by,...,by-1-by] €R '

betheoreticallypinned down? If yes, how bad (in terms of how* SIMPIex is called regular if the distances between any two

heavy the data are mixed) can MVES withstand and whereVg'tices are the same.

the limit?

The contribution of this paper is theoretical. We aim t®. Blind HU Problem Setup
address the aforementioned questions through analysis. Pr e adopt a standard blind HU problem formulation (readers
viously, identifiability analysis for MVES was done only forgre referred to the literature, e.g., [3], [4], for coveranfe
the pure-pixel case in [6], and for the three endmember cesqfe underlying modeling aspects). Concisely, consider a hy
the preliminary version of this paper [22]. This paper cdess perspectral scene wherein the observed pixels can be nibdele

the no pure-pixel case for any number of endmembers. \}§ jinear mixtures of endmember spectral signatures
prove that MVES can indeed guarantee exact and unique

recovery of the endmembers. The key condition for attaining T, =Asp, n=1,...,L, (2)
such exact identifiability is that some measures concelthiag wherez, € RM denotes theith pixel vector of the observed

pixels’ purity and geometry (to be defined in Section III—A)1 perspectral image, witi/ being the number of spectral
have to be above a certain limit. The condition mentioneé%/mds.A = [a an | € RMXN is the endmember

above is equivalent to the pure-pixel assumption for the Caﬁgnature matrix, with\' being the number of endmembers:

of two endmembers, and is much milder than the purg;z € RM is the abundance vector of theh pixel; L is the

pixel assumption for the case of three endmembers or Motember of pixels. The problem is to identify the unknown
Numerical experiments will be conducted to support the aboy4 from the observations:,,. .., x;, thereby allowing us to

claims. unmix the abundances (also unknown) blindly. To facilithe

. This paper Is orgapized as follows. '!'he p.r.obl_e.m Statem_esrUbsequent problem description, the noiseless case isiadsu
is described in Section Il. The MVES identifiability analysi 1, following assumptions are standard in the blind HU

results and the associated proofs are given in Sectionsidll & ontext and will be assumed throughout the paper: (i) every
IV, respectively. Numerical results are provided in Seattib abundance vector satisfias, > 0 and17s, — 1 (i.e., the

to support our theoretical claims, and we conclude the papg{,nqance non-negativity and sum-to-one constraints)A(|

in Sectlpn VI. , has full column rank; (iii)[ s1, ... sz | has full row rank; (iv)
Notations: R"™ and R™*™ denote the sets of all reaI-N is known

valued n-dimensional vectors aneh-by-n matrices, respec-

tively (resp.);|| - || denotes the Euclidean norm of a vectef; o ) )

denotes the transpose afand the same applies to matrices® Minimum-Volume Enclosing Simplex

given a setd C R", we denoteaff A andconv.A as the affine  This paper concentrates on the MVES approach for blind
hull and convex hull of4, resp. (see [23])int.A andbd.A as HU. MVES was inspired by the following intuition [9]: if
the interior and boundary ofl, resp., andolA as the volume we can find a simplex that circumscribes the data points
of A; the dimension of a sefl C R" is defined as the affine x4, ...,z and yields the minimum volume, then the vertices
dimension ofaff A; > 0 means thate is elementwise non- of such a simplex should be identical to, or close to, the
negative;l and1 denote an identity matrix and all-one vectotrue endmember spectral signatukes ...,ay themselves.

020,1%:1},



Figure 1 shows an illustration for the aforementioned iidai  purity” of the observed data set. To this end, we need to pre-
Mathematically, the MVES criterion can be formulated as agisely quantify what “pixel purity” is. The first subsectiovill

optimization problem introduce two pixel purity measures. The second subsection
) 1 b b will then present the main results, and the third subsection
bro b CRM O (conv{by, ..., by }) 3) will discuss their practical implications.

s.t. ¢, € conv{by,...,bx}, n=1,...,L,

wherein the solution of problem (3) is used as an estimate%f Pixel Purity Measures

A. Problem (3) is NP-hard in general [25]; this means that A natural way to quantify pixel purity is to use the following
the optimal MVES solution is unlikely to be computationallynéasure

tractable for any arbitrarily giveriz,, } =_,. Notwithstanding, p= max |su. 4)

it was found that carefully designed algorithms for hangllin i g )

problem (3), though being generally suboptimal in view af thEd- (4) will be called thebest pixel purity levein the sequel.
NP-hardness of problem (3), can practically yield satisfac A large val_ue_ofp_ implies_ that there exist at_)un_dance vectors
endmember identification performance: see, e.g., [6][1]), whos_e pu_rlty is high, while a small value pfindicates more
[20], and also [14], [16]-[18] for the noisy case. In this pap €AVl r;"nxed dataa To se;g 'tﬁ ‘I)gse,frve éﬂiaﬂll §l§1 for i”y
we do not consider MVES algorithm design. Instead, wé= 1h s=1,an eql_Jallty olds . and only :ﬁk or o
study the following fundamental, and very important, gigest 2nY %: that is, a pure pixel. Moreover, it can be shown that

A P ; .
When will the MVES problei8) provide an optimal solution v& = I3l folr anys > 0,1"s = 1, and equality holds if and
that is exactly and uniquely given by the true endmemb@ply if s = 5 1; that is, a heavily mixed pixel. Without loss

matrix A (up to a permutation)? of generality (w.l.0.g.), we may assume
1
—_<p<1,
JN SP=
where we rule oup = \/—% which impliess; = ... = s, =

%1 and leads to a pathological case.

The previously defined pixel purity level reflects the best
abundance purity among all the pixels, but says little on how
the pixels are spread geometrically with respect to (yvthe
various endmembers. We will also require another measure,
defined as follows

v =sup{r <1|R(r) C conv{sy,...,sr}}, (5)
where

R(r) ={s € conv{ey,...,en} | |Is|| < r}
={seRY | |s| <r}nconv{ei,...,en}. (6)

We call (5) theuniform pixel purity levelthe reason for this
Fig. 1. A geometrical illustration of MVES. The dots are thatal points Will be illustrated soon. It can be shown that

{xn}, the number of endmembers ¥ = 3, and 71, 72 and 7, are 1
data-enclosing simplices. In particulaf, is actually given by7, = — <~ <p.
conv{ai,az,as}. Visually, it can be seen thal, has a smaller volume N
than 71 and 7a. . . . .
i andT> Also, if v = 1, then the pure-pixel assumption is shown to
hold.

It is known that MVES uniquely identifiesi if the pure-
pixel assumption holds [6], that is, if, for ea¢k {1,..., N},
there exists an abundance vectgr such thats, = e;. 'V~ :
However, empirical evidence has suggested that even wieen '€ in Figure 2. As can be seen (and as will be showRi);)
pure-pixel assumption does not hold, MVES (more precisely, @ P2l on the affine hulifi{e,,...,ex} if r <1/VN —1.

approximate MVES by the existing algorithms) may still b therwisg,R_(r) takes a shape like a vertice.s—.crop.ped version
able to uniquely identifyA. In this paper, we aim at analyzing®f the unit simplexconv{es, ..., ex}. In addition, it can be
the endmember identifiability of MVES in the no pure-pixePOWn that (4) equals

case. p =inf{r | conv{sy,...,sr} C R(r)}.

To understand the differences between the pixel purity
measures in (4) and (5), we first illustrate h@(r) looks

In Figure 3, we give several examples with the abundances.

From the figures, an interesting observation is fR§t) serves
This section describes the main results of our MVES ideas a smallesR(r) that circumscribes the abundance convex

tifiability analysis. As will be seen soon, MVES identifiabil hull conv{si, ..., s}, while R(v) serves as a large®(r)

in the no pure-pixel case depends much on the level of “pixlat is inscribed inconv{sy,..., s }. Moreover, we see that

IIl. MAIN RESULTS



if the abundances are spread in a relatively symmetric ntandenotes the set that collects ath-dimensional minimum

w.r.t. all the endmembers, thegnand~ are similar; this is the volume simplices that enclogé and lie in affi{.

case with Figures 3(a)-3(c). However,and v can be quite

different if the abundances are asymmetrically spreag;ithi NOW: let

the case with Figure 3(d) where some endmembers have pixels 7. = conv{es, ..., exn} C RV,

of high purity but some do not. Hence, the uniform pixel purit

level v guantifies a pixel purity level that applies ur?iform%uy to 7o = conv{ay,...,an} S RY,

all the endmembers, not just to the best. denote thé N —1)-dimensional unit simplex and the endmem-
bers’ simplex, respectively. Also, for convenience, let

XL:{$1,...$L}, SL:{Sl,...SL},

denote the sets of all the observed hyperspectral pixels and
abundance vectors, resp., and note their dependepce-
As,, as described in (2). Under the above definition, the exact
and unique identifiability problem of the MVES criterion in
(3) can be posed as a problem of finding conditions under
which

MVES(Az) = {T}.

Our first result reveals that the MVES perfect identifiailit
does not depend oA (as far asA has full column rank):

Proposition 1 MVES(X;,) = {7,} if and only if
MVES(S.) = {7}

The proof of Proposition 1, as well as those of the theorems
to be presented, will be provided in the next section. Prspos
tion 1 suggests that to analyze the perfect MVES identiftgbil
w.r.t. the observed pixel vectors, it is equivalent to aralthe
perfect MVES identifiability w.r.t. the abundance vectddsie
may expect that perfect identifiability cannot be achieved f
too heavily mixed pixels. We prove that this is indeed true.

Theorem 1 AssumeN > 3. If MVES(Sy) = {7.}, then the

best pixel purity level must satisfy> \/%

To get some idea, consider the example in Figure 3(a). Since
Figure 3(a) does not satisfy the condition in Theorem 1,ili$ fa

to provide exact recovery of the true endmembers. Theorem 1
is only a necessary perfect identifiability condition. Wscal
prove a sufficient perfect identifiability condition, deibberd as
follows:

Theorem 2 AssumeN > 3. If the uniform pixel purity level

satisfiesy > —<—, thenMVES(St) = {7c}.

Among the four examples in Figure 3, Figure 3(b) and Fig-
Fig. 2. A geometrical illustration gR () in (6) for N = 3. We viewR (r) by ure _3(C) are cases that satisfy the condition in Theorem 2 and
adjusting the viewpoint to be perpendicular to the affind bfi{e1, e2,e3}.  achieve exact and unique recovery of the true endmembers.
It is worthwhile to emphasize that the sufficient identifiabi
ity condition in Theorem 2 is much milder than the pure-pixel
- assumption (which is equivalent tp = 1) for N > 3. In
B. P le MVES | fiabil . . . T
rovable S dent-l |ab|.|'-[y B _ fact, the pixel purity requirement/y/N — 1 diminishes as
Our provable MVES identifiability results are describedy increases—which seems to suggest that MVES can handle
as follows. To facilitate our analysis, consider the foliogy more hea\/i]y mixed cases as the number of endmembers

definition. increases. Thus, Theorem 2 provides a theoretical justifita
on the robustness of MVES against lack of pure pixels.
Definition 1 (minimum volume enclosing simplex) Given One may be curious about how Theorem 2 is proven.

an m-dimensional set/ C R", the notation MVES(//) Essentially, the idea lies in finding a connection between th
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Fig. 3. Examples with the abundance distributions and tmeesponding best and uniform pixel purity levels.

MVES identifiability conditions ofS;, andR(v) [cf. (5)-(6)]. C. Further Discussion
In particular, it is shown that iIMVES(R(~)) = {7.}, then

MVES(Sy) = {7.}. Subsequently, the problem is to pin dowq( o .
. el " . ey quantification on when MVES achieves perfect endmem-
the MVES identifiability condition ofR(r). This turns out to be)r/ %entifiability. Nevertheless, one may h:ve these &irth

be the core part of our analysis, and the result is as fo”OWa'uestions: How isy related to the abundance pixel s8t

exactly? Can the relationship be characterized in an akplic

MVES(R(r)) = {T}; i.e., there is only one MVES 62(r) and practically interpretable manner? For example, as ean b

. . observed in the three-endmember illustrations in Fig. 8ssa
VN — <
Iﬁre t/nit];fimpll o L and that MVES s always given by, ;o " o tficient identifiability conditiony > 1/y/N —1 in

Theorem 2 seems to require some abundance pixels to lie on

As an example, Fig. 2.(b) is an instance where Theoremtl8 boundary off.. However, from the definition of in (5),

holds; by visual observation of Fig. 2.(b), we may argue thitis not immediately clear how such a result can be deduced

the MVES of R(r) for N = 3 andr > 1/+/2 should be the (e.g., how many pixels on the boundary, and which parts of

unit simplex. Also, we should note that the geometric problethe boundary?). Unfortunately, explicit characterizatif ~

in Theorem 3 is interesting in its own right, and the resuW.r.t. Sy appears to be a difficult analysis problem. In fact,

could be of independent interest in other fields. even computing the value of for a givenSy, is generally a

Before we finish this subsection, we should mention theomputationally hard probleh{26].

case ofN = 2. While the number of endmembers in practical Despite the aforementioned analysis bottleneck, our em-

scenarios is often a lot more than two, it is still interegtio  pirical experience suggests that if evesy follows a con-

know the identifiability forvV = 2. tinuous distribution that has a support coveriffr) for
r>1/v/N —1 (e.g., Dirichlet distributions), and the number

Proposition 2 AssumeN = 2. We haveMVES(Sy) = {7.} of pixels L is large, there is a large probability for MVES

if and only if the pure-pixel assumption holds.

We have seen that the uniform pixel purity leygbrovides a

Theorem 3 For any 1//N—-1 < r < 1, we have

. . IMore accurately, verifying whether or not a convex body(¢) here)
We should recall that the pure-pixel assumption corres;aongglongS to aV-polytope fonvS; here) has been shown to be coNP-

toy=1. complete [26].



to achieve perfect identifiability. The numerical results iparticular, it is seen that to satisfy Assumption 1 for gaher
Section V will support this. Moreover, we can study special;;’s, the number of pixel& should be no less thaki (N —1).
but still meaningful, cases. Herein we show one that uses fhieis implies that we would need more pixels to achieve pérfec

following assumption: MVES identifiability as/N increases.
We finish with mentioning some arising open problems.
Assumption 1 For everyi,j € {1,...,N}, i« # j, there From the above discussion, it is natural to further question
exists a pixel, whose index is denoted by, j), such that whether (7) in Assumption 1 can be relaxed to combinations
its abundance vector takes the form of three endmembers, or more. Also, the whole work has so
far assumed the noiseless case, and sensitivity in the noisy
Sn(ij) = ijei + (1 — aij)ey, )

case has not been touched. These challenges are left as futur
for some coefficient;; that satisfies; < a;; < 1. work.

Assumption 1 means that we can find pixels that are consti-
tuted by two endmembers, with one dominating another as
determined by the coefficient;; > 5. Also, the pixels in (7)

lie on the edges of.. Fig. 4 gives an illustration folv = 3.
Note that Assumption 1 reduces to the pure-pixel assumption
if a;; = 1 for all 4, . Hence, Assumption 1 may be seen as
a more general assumption than the pure-pixel assumption. |
the example ofV = 3 in Fig. 4, we see thaj should increase
asoy;’s increase. In fact, this can be proven to be true for any
N >2.

Theorem 4 Under Assumption 1 and fa¥ > 2, the uniform
pixel purity level satisfies

Fig. 4. lllustration of Assumption 1N = 3, «;; = 2/3 for all ¢, 5.
- 1 [(Na—1)2 1
TN N ’
where IV. PROOF OFTHE MAIN RESULTS
a= min oy This section provides the proof of the main results desdribe

i,j€{1,...,N} in the previous section. Readers who are more interested in
e numerical experiments may jump to Section V.
is the smallest value af;;’s.

The proof of Theorem 4 is given in Section IV-F. Theorem ﬁ‘ Proof of Proposition 1

is useful in the following way. If we compare Theorems 2 and The following lemma will be used to prove Proposition 1:

4, we see that the condition
Lemma 1 Let f(x) = Az, where A € RM*N M > N,

\/i {(Na —1)2 N 1] . and suppose that has full column rank.

N| N-1 VN =1’ (@) Let T ¢ RY be an(N — 1)-dimensional simplex, and

implies exact unique identifiability of MVES. It is shown tha SupposeTg C aff{es,..., ex}. We have

the above equation is equivalent to vol(f(7a)) = a - vol(Tg), (8)

a>%, where o = w, and A = [ a; — ay,as —

ay,...,ay—1 —ay |. Also, it holds true thaff(7¢) C
for N > 3. By also noting; < a < 1 in Assumption 1, aff{ay,...,ax}.
and the fact that > £ for N > 4, we have the following (b) Let7;; ¢ RM be an(N — 1)-dimensional simplex, and
conclusion. suppos€Ty C aff{ai,...,an}. We have
1

Corollary 1 Suppose that Assumption 1 holds. Br= 3, vol(f~!(Tw)) = = - vol(Tu), 9)
the exact unique identifiability conditioMVES(S.) = {7.} o
is achieved ifa;; > 2 for all 4, 5. For N > 4, the condition and f~!(T) C aff{es,...,en}.
MVES(S.) = {7c} is always achieved (subject < aij < The proof of Lemma 1 is relegated to Appendix A. Now,
1 in Assumption 1). suppose thaMVES(Sy) = {7.}, but MVES(Xy) # {T.}.

Let 7y be an MVES ofX;. By the MVES definition (see

The implication of Corollary 1 is particularly interestin
b y P y gDefinition 1), we have

for N > 4—MVES for N > 4 always provides perfect
identifiability under Assumption 1. However, we should also XL CTu, Tu Caff{xy,...,z},

note that this result is under the premise of Assumption 1. In vol(Tz) < vol(Ta). (10)



Recall that[s;,...,s | is assumed to have full row rankis a unitary matrix. Or, equivalenthC is any semi-unitary
and satisfyl”s, = 1 for all n. From these assumptionsmatrix such thatC”d = 0.

one can prove thaiff{sy,...,s.} = aff{e1,...,en}, and Recall that an (N — 1)-dimensional simplexV C
aff{x1,...,xr} = aff{a1,...,an}; see [27, Lemma 1] for aff{e;,...,en} can be written as
example. Then, by applying Lemma 1.(b) to (10), we obtain
V = conv{vy,...,on},
Spcft -1 C aff{ey, ...
o __fl (T, (_TH) € aff{er, .. ent, wherewv; € aff{e;,...,ey} for all i. By (15), eachv; €
vol(f ™ (Tw)) < vol(f~(Ta)) = vol(Te). aff{e1,...,en} can be represented by, = Cw; + d for
The above equation implies thd is not the only MVES of Somew; € RY~1. Applying this result taconv{vs, ..., v},
S, which is a contradiction. we obtain the following equivalent representation)of
On the other hand, suppose thdVES(X.) = {7.}, but V=1{s=CO+d|6ecW, 17)

MVES(S1) # {7.}. This statement can be shown to be a
contradiction, by the same proof as above (particularlg, thvhere
incorporation of Lemma 1.(a)). The proof of Proposition 1 is W = conv{ws,...,wn}. (18)

therefore complete. Also, by the simplex volume formula (1) and the semi-unttari

of C, the following relation is shown
B. Proof of Theorem 1

The proof is done by contradiction. Suppose that vol(V) = vol(W). (19)
MVES(Sz) = {7}, butp < \/ﬁ Recall Step 3: We show that there are infinitely many MVES of
R(p) for = < p < ——. Consider the following lemma.
R(r)=T.n{scRY | |s| <r}. (11) (o) VN S P = UN 9
The proof is divided into four steps. Lemma 2 Let

Step 1: We show that anyy € MVES(R(p)) is also an C(r) = aff A RN < 20
MVES of Sy.. To prove it, note that (r) = aff{er,....en}N{s € sl <r}. (20)
denote a2-norm ball onaff{e;,...,en}. If

St € R(p). (12) \/% thenR(r) in (11) equalsC(r).

Proof of Lemma 2: Note thatR(r) C C(r). Hence, to
vol(U) < vol(V), for all U € MVES(SL), V € MVES(R(p)). prove Lemma 2, it suffices to show thétr) C R(r). By
(13) the equivalent affine hull representation in (15), we cartewri

< r <

2

Eq. (12) implies that

Also, since7. enclosesk(p), we have C(r) = {s = CO+d|||s| < r}. By substitutings = C8+d
vol(V) < vol(T), for all V € MVES(R(p)).  (14) ntolls] <7, we get, for anys & C(r),
sl < 7 <=]10]* + ||d|* < r* (21a)

Since we assumMVES(Sy) = {7.} in the beginning, we
observe from (13) and (14) thabl(i/) = vol(V) for all U € — |02 < - 1 (21b)
MVES(SL), V € MVES(R(p)). The above equality, together - N’

with (12), implies that any’ € MVES(R(p)) is an MVES of where (21a) is obtained by using the orthogonality in (16);

St (or satisfiesy € MVES(Sy,)). (21b) is by||d||? = . Hence,C(r) can be rewritten as
Step 2: We give an alternative representation(éf — 1)- 2 _ o
dimensional simplices onff{ei,...,ex}, which will fa- Cr)={s=CO+d| |0 <" —1/N}. (22
cilitate the proof. The affine hulkff{e,,...,ex} can be Moreover, by lettinge’ andu’ denote theth rows of C and
equivalently expressed as U respectively, we have
aff{e;,...,en} ={s=CO+d |9 cRY"1}  (15) s = [¢]70 +d; (23a)
where

Y

: 1
=liellen + (23b)

1< 1
= N (N-1)-N N 7

andC € RV*(N-1) js the firstN — 1 principal left singular
vectors ofR = [ e; —d, ..., ey —d |; see [6], [27]. We note Where (23b) is due to the Cauchy-Schwartz inequality; (&3c)

that ) due to (21b)y < 7 and the fact that = |[u'|” = § +
R=1-—117, lct||* (see (16) and note its orthogonality). Eq. (23) suggests
) ) N o o that anys € C(r) automatically satisfies > 0, and hence,
which, as a standard matrix result, its firét— 1 principal left ¢ R(r). We therefore conclude th&t(r) = R(r). m
singular vector can be shown to be a@ysuch that By Lemma 2, we can replacR(p) by C(p) and consider
1 the MVES of the latter. Suppose thite MVES(C(p)). Our
U= [ C, ﬁl } (16) argument is that a suitably rotated versionofis also an



MVES of C(p). To be precise, use the representation in (17)- Step 2: We prove that
(18) to describe’. Comparing (17)-(18) and (22), we see that

1

C(p) C V is equivalent to MVES(SL) € MVES(R(7)), for 7>~ (29)
{061 <p*—1/N}Cw. (24) By the definition ofy in (5), we have

From )V, let us construct another simplex R(v) C convSy, C Te. (30)

V' ={s=CQO+d|8cW} (25) Also, in Step 1, it has been identified tHAt € MVES(R(r))

where@Q € RIW=1x(N=1) js a unitary matrix. Due to (24), for r € [1/V/N —1,1]. Hence, fory > 1/v/N —1, we can
V' can be verified to satisf¢(p) C V'. Also, by observing apply Fact 1 to (30) to obtain
the semi-unitarity oilC'Q, the volume of)’ is shown to equal MVES(convSy) € MVES(R(7Y)). (31)

vol(V') = vol(W) = vol(V). Next, we use a straightforward fact in convex analysis: for a
In other words)”’ is also an MVES of(p). In fact, the argu- convex ser’, the conditiorC C 7"is the_ same asonvC T,
ment above holds for any unitafy. Since there are infinitely and vice versa. In the context here, this implies that any BVE
many unitaryQ for N > 3 (note thatQ e R(N-Dx(N-1)) of convSy, also enclosesSr,, and the converse is also true.

we also have infinitely many MVESs @f(p) for N > 3. Hence, we have

Step 4: We combine the results in the above steps to draw MVES(convSy) = MVES(SL). (32)
conclusion. Step 1 shows that alye MVES(R(p)) is also o _ )
an MVES of Sy, while Step 3 shows tha®(p) has infinitely BY combining (31) and (32), Eq. (29) is obtained.
many MVESs forp < —=L—, N > 3. This contradicts the ~ Step 3: We prove that

assumption that there is o?nly one MVES&f. The proof of 1

Theorem 1 is therefore complete. MVES(R(7)) = {Te}, for v > VN -1’ (33)
It has been shown in Step 1 thgt € MVES(R(v)).

C. Proof of Theorem 2 The question is whether there exists another MVES €

To facilitate our proof, let us introduce the following fact MVES(R(7)), with 77 # 7.. By Theorem 3, such &’ does
not exist. Thus, (33) is obtained.
Fact 1 Let C,D C R™ be two sets of identical dimension, Step 4: We combine the results in Steps 2 and 3. Specif-
with C € D. If D C T for some7 € MVES(C), thenT ¢ ically, by (29) and (33), we geMVES(S.) C {7.}. As Si,
MVES(D) and MVES(D) C MVES(C). is enclosed by7., we further deduceMVES(S.) = {7.}.

Theorem 2 is therefore proven.
Proof of Fact 1: Note thatC C D implies that any7”’ <

MVES(D) is a simplex enclosing. Since7 is a minimum

volume simplex among all thé-enclosing simplices, we haveD' Proof of Theorem 3

) ) Let 7' € MVES(R(r)) be an arbitrary MVES ofR(r) for
vol(T) < vol(T") for all 7" € MVES(D). (26) 1//N =1 < r < 1. We prove Theorem 3 by showing that
T’ = T. is always true. The proof is divided into three steps.

Moreover, the conditiorD C 7 implies that7 is also aD-
Step 1: We show that

enclosing simplex, and, as a result, equality in (26) holids.

also follows that any/” € MVES(D) is also an MVES ot. T’ € MVES(R(1/VN —1)).
|
. ) To prove this, note thatR(1/v/N —1) C R(r) for all
Now we proceed with the main proof. 1/V/N =1 < r < 1. Also, it has been shown in (27) that
Step 1: We show that 7. € MVES(R(r)) for all 1/y/N —1 < r < 1. Applying
T. € MVES(R(r)), for anyr > 27) Fact 1 to the above two results yields
-1 MVES(R(r)) € MVES(R(1/VN — 1)),

Note from the definition ofR(r) in (6) that
(r) in (6) for all 1/VN—1 < r < 1. Since T’ € MVES(R(r))

C(-=)=R(—-=) CR(r) CT., (28) for 1/yN—-1 < r < 1, it follows that 7' ¢
(VN‘l) (VN‘I) MVES(R(1/v/N — 1)) is also true.

for any r € [1/v/N —1,1], where the first equality is by Step 2: To proceed further, we apply the equivalent repre-

Lemma 2. We prove that sentation in (17)-(18) to rewrit&. as

To={s=CO+d|0ecW.)} (34)

for some( N —1)-dimensional simplexV, C RV 1, Similarly,
e can characterizé’ by

Lemma 3 The unit simplex. is an MVES oC(1/vN — 1).

The proof of Lemma 3 is relegated to Appendix B. B
applying Fact 1 and Lemma 3 to (28), we obtdip €
MVES(R(r)) for r € [1/v/N — 1,1]. T ' ={s=CO+d|0ecW} (35)



for some(N — 1)-dimensional simplexV’ C R¥—1. Also, by From (39)-(40), it is immediate thaoonv{b;,b,} is a mini-
noting R(r) = 7. NC(r), the expression of (r) in (22), and mum volume simplex enclosing;, if and only if
R(r) = C(r) for r = 1/4/N — 1 (see Lemma 2)R(r) can

be expressed as B2 = n:r?,i,r,l,, Lans b= max . (41)
R(r) = Now, consider perfect identifiabilit{b,,b2} = {e1, ez},
. v o which is equivalent tog; = 1, 85 = 0. Putting the above
{ {s=Co+d|0cB(yr 1/2N)}’ "= N-1  conditions into (41), we see that perfect identifiability is
{s=C0+d|0cW.NB(\/r*=1/N)}, 7> 75— achieved if and only if the pure-pixel assumption holds; i.e

(36) there exist two pixels, indexed by; and ns, such that

where S, = e ands,, = ey (Of ay,, =1, a,, = 0), resp.
B(r)={0 eRY"' | |6] <r}. 37)
Now, by comparing (35)-(36), the following result can bé&- Proof of Theorem 4
proven: Let
T’ € MVES(R(r)) <= Py = aei+(1-aje;, (“42)
fori,j € {l,...,N},i # j, and recally = min;-; a;;. It can
/2 _ 1 ) ) ) ) J i#j Qg
/e MVES (B(v/r UN)) ’ v = be verified that eaclp;; is a convex combination o$,,; ;
MVES (W, N B(y/r2 — 1/N)) , > \/]\}7_ ands,,; ;) in (7). Thus, every;; satisfiesp;; € convSy. For

1
(38) notational convenience, let
The proof of (38) is analogous to that of Proposition 1, and IR o
will not be repeated here. P =APiije, Ny, i

Step 3: From the equivalent representation (38)lenote the set that collects all thpg;’s. By the resultp;; €
we further deduce the following results: iW., W' € convSy, we haveconvP C convSy, and consequently,
MVES(B(y/r2 —1/N)) for r = 1/v/N — 1, which is due
to Step 1 and (27); iV, N B(y/r2 —1/N) C W' for all
r > 1/4/N — 1, which is due to the underlying assumptiorApplying the above implication tg in (5) yields

/ .

thatTn € MVES(:R,(T)) for1/v/N — 1 < r < 1. Consider the > sup{r< 1 | R(r) C convP} (43)
following lemma:

R(r) C convSy, <= R(r) C convP.

Eq. (43) has an explicit expression. To show it, let us first
Lemma 4 Suppose thatV, W' € MVES(B(r)), whereB(r) consider the following lemma.
is defined in(37). Also, suppose thaR = W N B(¥) C W'
for somer > r > 0. Then we havey = W', Lemma 5 For any « € (0.5, 1], conv/P is equivalent to

The proof of Lemma 4 is relegated to Appendix C. By convP={s€Te|si<ai=1...,N}  (44)

Lemma 4, we obtainV, = W', and consequentlff. = 7".  The proof of Lemma 5 is relegated to Appendix E. By using
Lemma 5, and observing the expressionggf) in (5) and

E. Proof of Proposition 2 convP in (44), we see the following equivalence
Assume N = 2, and letconv{b;,b>} be an MVES of R(r) C convP <= max_s; <« forall s € R(r)
Sr, whereb;, by € aff{e;,es} C R2. Using the simple fact e
aff{e1, ea} = {s € R? | 51 + 59 = 1}, we can write — SES%I()T) P T <o (45)
B1 B2 1 _ L
b, = {1 v by = AL for m<r<1 (n_ot_e thatR(r) =0 fpr r < \/ﬁ)' Next, _
we solve the maximization problem in (45). The result is

for some coefficientsd;, 5, € R. By the same spirit, every Summarized in the following lemma.

abundance vectas,, (for N = 2) can be written as
Lemma 6 Let

an
sn[ }, n=1,...,L, * (0 _
T=
where( < a,, < 1. From the above expressions, it is easy to

L 1 *
show that the MVES enclosing propersy, € conv{b;, by} ‘;Vile(;eé\;?o?magd %y §_07;]§ 1. The optimal valuex*(r) has
is equivalent to S Xpressi

_ 1+ /(N - (N2 - D

ﬂ2§an§ﬂ17 n:]-a"'va (39) Oé*(T) N
where we assumg; > 3> w.l.o.g. Moreover, from the simplex The proof of Lemma 6 is shown in Appendix F. Now, by
volume formula in (1), the volume afonv{b,, b} is applying Lemma 6 and (45) to (43), we get

vol(conv{by,bs}) = 1 — Ba. (40) v > sup{r € [1/VN,1] | o*(r) < a}. (46)
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By noting that o*(r) is an increasing function of- € 25
[1/v/N, 1], we see that if there exists anc [1/v/N, 1] such

that a*(r) = «, then thatr attains the supremum in (46). It 2
can be verified that the solution t0*(r) = « is

— : : :
N7 ) i i N7 :
* r) = , i i L i
. . . |
S 1sl ! ,
2 & |
+ —_ —_— 5 ) L | 4
l
|
and the above satisfiesr € [1/v/N,1] for 0.5 < a < 1, 05/ ]
. . . . [ < = -L
> ) ! 3 V2
desired result in Theorem 4. ot h/ ‘ ‘ — L

8
1 [(Na-1) B
T\/N[ N—1 +1} <1
<
N > 2. Putting the above solution into (46), we obtain the

V. NUMERICAL EXPERIMENTS

In this section, we provide numerical simulation resultst th
aim to support the theoretical MVES identifiability results
proven in the previous section. The signals are generatec 4r
by the following way. The observed data sgti,...,z}
follows the basic model in (2). The endmember signature
vectorsaq,...,ay are selected from the U.S. geological
survey (USGS) library [28], and the number of spectral bands
is M = 224. The generation of the abundance vectors is
similar to that in [6]. Specifically, we generate a large pool
of random vectors following a Dirichlet distribution with
parametery = %1, and then select a number d@f such
random vectors as the abundancefsst . . ., s }. During the ot : . : u
selection, we do not choose vectors wha@sgorm exceeds a ' ' s ' '
given parameter; the reason of doing so is to allow us to
control the pixel purity level of s1,..., sz} at or belowr in
the simulations. Note that if the number of pixdlsis large,
then one should expect thatbe close to the best pixel purity 8r
level p and uniform pixel purity levely. In the simulations,
we setl = 1, 000.

The simulation settings are as follows. MVES is imple-
mented by the alternating linear programming method in [6].
We measure its identification performance by using the root-
mean-square (RMS) angle error

¢ (degrees)
R @

[N
T

<
I |
Sl

[«2)
T

¢ (degrees)
S

N
T

|
|
|
|
|
|
|
|
|
|
|
|
:
aTa 2 :/
. T
= min arccos £
¢ = min NZ[ (azn lar, ﬂ 0

where{as,...,anx} denotes the MVES estimate of the end- ©N=5
members, andly denotes the set of all permutations of
{1,..., N}. A number of50 randomly generated realizations
were run to evaluate the means and standard deviatiops of 8r
The obtained RMS angle error results are shown in Figure 5.
We see that zero RMS angle error, or equivalently, perfect 6f
identifiability, is attained when > 1/4/N —1 — which is
a good match with the sufficient MVES identifiability result
in Theorem 2. Also, we observe non-zero errors for<
1/v/N — 1, which matches the necessary MVES identifiability
result in Theorem 1.
Before closing this experiment section, we should mention f\
that previous papers, such as [6], [15], [L7]-[21], havethgr 03 o5 o6 o7 o8 oo 1
provided a nice and rather complete coverage on MVES'’s r
performance under both synthetic and real-data expergnent (dyN=6
Hence, readers are referred to such papers for more experi-
mental results. The results reported therein also inditete Fig. 5. MVES performance with respect to the numerically tagnpixel
MVES-based algorithms are robust against lack of pure pixePurity levelr.

]
~ i

5 0.6 0.7 0.8 0.9
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The numerical (and also theoretical) results above fughew and
the limit of robustness—+/+/N — 1 with the uniform pixel det(H"H) = det(AT A) - | det(©))?. (48)

purity level. . .
Now, by (1), (47) and (48), Eq. (8) is obtained. Also, the

property f(7¢) C aff{ai,...,an} can be easily proven by
the fact that = AG and17%g; = 1 for all 1.
Next, we prove Lemma 1.(b). The séi; can be written as

VI. CONCLUSION

In this paper, a theoretical analysis for the identifiatylibf
MVES in blind HU was performed. The results suggest that
under some mild assumptions which are considerably more T = conv{hq,...,hy},
relaxed than those for the pure-pixel case, MVES exhibis ro Do
bustness against lack of pure pixels. Hence, our study gesvi V'€r€hi € RM for all i. SinceTy C aff{as,..., an}, we
a theoretical explanation on why numerical studies usuaggvehi € aff{as,...,ay} forall i. Hence, eacth; can be
found that MVES can recover the endmembers accurately§fiP'essed a&i = Ag;, whereg; € R™, 17g; = 1. This
the no pure-pixel case. leads to

fYTg) ={ x| Az € conv{h,,...,hyx} } (49a)
ACKNOWLEDGEMENT —{z|Az=H6, 6>0,170=1} (49b)

The authors would like to thank the anonymous reviewers — (x| Az—AGH, 6>0,170 =1} (49c)

and associate editor, who have helped us improve the paper T

significantly. ={z|xz=GH, 6>0,170=1} (49d)
= conv{gi,...,gn} (49e)
APPENDIX Caff{el,...,eN}, (49f)

A. Proof of Lemma 1 where (49d) is due to the full column rank condition Af

Let us first prove Lemma 1.(a). The skt can be explicitly ang (49f) uses the structuté’'g;, = 1. The rest of the proof
represented by is the same as that of Lemma 1.(a).

T = conv{gi,...,gn},

whereg; € RY for all i. Also, by lettingh; = Ag; for all 4, B. Proof of Lemma 3

one can easily show that Fix » = 1/v/N — 1. From (22),C(r) can be re-expressed
as
f(Tg) = convihu,..., hw}. C(r)={s=CO+d|6cBu (50)
Since7¢ Caﬁ{el,...,eN}, we haveg; Eaﬁ{el,...,eN} h — /2 _1/N=1 N 1N
for all i. This means that each; satisfies1”g; = 1, or Wheren = vr /N =1/V( )N, and
equivalently,g; v = 1 — Z;.V:_ll g:.;. Using the above fact, B(r')={0 c RN | ||0] <} (51)

we can write )
is a ball onRY 1. Also, recall from (17)-(18) that an MVES

i =C0; + en, .
g N V € MVES(C(r)) can be written as

where®; = [g;]1.(nv—1), and

V={s=CO+d|0cW}, (52)
I Nx(N-1
C= [14 € RVX( ). whereW = conv{wy, ..., wxy} C RY~1; and thatvol(V) =
_ vol(W) (see (19)). From the expressions above, we can deduce
LetG=[g1—9gn,...,gn—1—gn |. We get the following result:) must be an MVES oB3(y) if V is an
G =CO, MVES of C(r), and the converse is also true.

= Next, we will use the following fact:
where® = [0, — Oy,...,0y_ 1 — Oy | € RW-UX(N=1)

We therefore obtain Fact 2 [29, Theorem 3.2]The volume of anN — 1)-
det(GT @) = det(@TCTCO) (473) dimensional simpleXV enclosingB(r’) in (51) satisfies
= det(®) det(CT'C) det(©) (47b) vol(W) > 1 NE (N — 1)%(N—1)(T./)N—1 (53)
— N - |det(®)2, (47¢) (V-1
where (47b) is due tdet(AB) = det(A) det(B) for square with equality only for the regular simplex.
A, B, and (47c) is due to the following result Using Fact 2 and the resulbl(V) = vol(W), we obtain
det(CTC) = det(I +117) =N 1
et ) et(I + ) vol(V)ziN 1|\/N7
(note that the matrix resultet(I+qq”) = ||q||*+1 has been (V-1
used). Likewise, by lettind = [ h; —hx,...,hxy_1—hx ], where we should note that the right-hand side of the above
we have equation is obtained by putting = . =1//(N — 1)N into

H=AG=ACO = AQ, (53). On the other hand, consid@ = conv{es,...,ex},
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which enclose€ (r) (for » = 1/4/N — 1). From the simplex Subsequently, the following inequality chain can be defive
volume formula (1), one can show that

{t1,...,ty} =bdB(r) \ intW (61a)
vol(T;) = ﬁ\/ﬁ CbdB(r) \ (itW N intB(7)  (61b)
' =bdB(r) \ intR (61c)
Since 7. attains the same volume a5 7. is an MVES of —bdB(r) N bdR (61d)
c(r). ’
where (61a) is by (54); (61c) is bwt(W N B(F)) = intWn
intB(7); (61d) is by (60).
C. Proof of Lemma 4 Moreover, we havédB(r)NbdR C {t,,...,tx}, obtained
The following lemma will be required: from the following chain:
. 7Lt Br) = {8 € RY1 | 6] < r}, wh bdB(r) N bdR =bdB(r) N bd(W N B(7)) (62a)
emma e r) = S - < rt, where _
r > 0. For any W € MVES(B(r)), the boundaries of3(r) CbdB(r) N (bdW UbdB(r)) (62b)
and W have exactlyN intersecting points. Also, by letting = (bdB(r) " bdW) U (bdB(r) N bdB(r))
{t1,...,tx} = bdB(r)NbdW be the set of those intersecting (62c)
points, we have the following properties: = (bdB(r) N bdW) U 0 (62d)
(&) The pointsty,...,ty are affinely independent. =bdB(r) \ intW (62e)
(b) The simpleXV can be constructed frorty, ..., ty via —{t1,....tx} (62f)
N
- Nel | 2 — 4T where (62b) is by (56); (62d) is by > r; (62e) is by
W= Q {OeRTT | " > t76}). bdB(r) C B(r) C W; (621) is by (54).
= Step3: We prove{ti,...,ty} = {t;,...,t}. In Step2,
The proof of Lemma 7 is given in Appendix D. Let it is shown that
{t1,...,tx} = bdB(r) N bdW, {t1,...,txn} = bdB(r) N bdR. (63)
{ti,....th} = bdB(r) nbdW', By the fact thatt! € B(r) and by (60), we have
which, by Lemma 7, always exist. Sind&(r) C W and t, e R. (64)

B(r) c W, the above two equations can be equivalentl

expressed as I%;Ioreover, from the assumption tHatC W', we havebd W'nN

intR = (. But from (55), we note that, € bdW’. Thus we

{t1,...,tx} =DbdB(r) \ intW, (54) can conclude] ¢ int(R), which together with (64) yields
{tll, ce. ,t?v} = de(T) \ intW'. (55) t,; € bdR. (65)
Also, by Lemma 7.(b), we havey = W' if {t1,....tn} = Combiningt, € bdB(r) (cf. (55)) with (63) and (65), we
{th,....ty}. In the following steps we focus on provingoptaint, € {t,,...,tx}. Since Property (a) in Lemma 7 re-
{t1, . tn} = {1, ..ty ) strictst}, . . ., t to be affinely independent, the only possible
Stepl: We first prove choice oft),...,thy is {t},...,t} = {t1,...,ty}. Lemma
bd (W N B(F)) € bdW U bdB(F) (56) 4 is therefore proven.

by contradiction. Suppose that (56) does not hold, namety, Proof of Lemma 7

- N=1 gatisfyi - -
there exists am € R™ ™" satisfying The proof of Lemma 7 requires several convex analysis

z € bd (W N B(F)), but (57) results. To start with, consider the following results:

@ ¢ bdW U bdB(7). (58) Fact 3 Let W = conv{wi,...,wy}  R¥~! denote an

(N — 1)-dimensional simplex. Also, let
P(g,H)={0 cR""' | HT0 + g > 0,
- (H)"0+(1-1"g) >0}

Now, sinceW N B(7) is a closed set, (57) implies
x € WNB(F). (59) (66)

Equations (58) and (59) imply that € int)V and thatx < N1 (N—1)x (N 1)
intB(r). Thus, we haver € int(W N B(F)) which contradicts denote a polyhedron, whetg, H) € R* ™" xR

(57). Hence, (56) must hold. is given. | |
Step2: We show that{t:,...,ty} = bdB(r) N bdR. Let (&) AnyWW can be equivalently represented BYg, H) via

us first consider provingty,...,tx} C bdB(r) N bdR. We setting

observe fromb3(r) € Br) andBr) & W that H=wW", g=-W wy, (67)

B(r) C B(r)nW =R. (60) whereW = [ w; — wy,...,wx_1 —wyx |.
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(b) Suppose thafl has full rank. Under the above restric- Likewise, it is shown that if@ satisfies (74), therf =
tion, the setP(g, H) for any (g, H) can be equivalently (r/||H1||)H1 = ty is the only choice and (74) becomes

represented byV, whose verticeawy,...,wy can be ‘ TN
determined by solving the inverse ¢67). Also, the —rl[H1[+(1-1"g) =0. (77)
corresponding volume is We therefore complete the proof thét € bdB(r) N bdW

1 . implies @ € {t,,....ty}.
m| det(H)| ™" (68) We should also mention (71)-(72). From the proof above, it
_ ) is clear that; € bdB(r)Nbd) holds if and only if (76) holds
The proof of Fact 3 has been shown in the literature [64, , — 1,...,N —1, and (77) holds foi = N, respectively.

[23]. Also, (68) is determined by the simplex volume formulg,, considering (69) as well, we obtain the conditions in (71)
(1) and the relation in (67). From Fact 3, we derive sever 2). m

convex analysis properties for proving Lemma 7.

vol(P(g, H)) =

) ) ) N1 We are now ready to prove Lemma 7. Recall thét €
Fact 4 LgtW be an(N — 1)-d|men5|ona_l S|mp_lex oR © MVES(B(r)) is assumed. By Fact 3.(a), we can writg =
and consider the polyhedral representation/fin (66)-(67). P(g, H) for some(g, H), with H being of full rank. Then,

Also, recall the definitioB(r) = {6 € R¥™" | 0] <r}.  py'Fact 4.(b), we obtaibdB(r) N bdW C {t1, ..., tx}. We
(@) If B(r) € W, then the following equations hold consider two cases.
Rl g >0, i=1 N —1, (69a) Case 1: Suppose that; ¢ bdB(r) N bdW for somei €
T T ’ {1,..., N —1}. For simplicity but w.l.0.g., assumie= 1. By
—r[[H1[+ (1 —-1"g) >0, (69D)  Fact 4.(a)-(b), we have

where h; and g; denote theith column of H and ith R+ g1 >0 (78a)

element ofy, resp. Conversely, i{69) holds, then3(r) C T
(b) SupposeB(r) € W. The boundaries of3(r) and W —r|H1||+ (1 —1"g) > 0. (78c)

have at mostV intersecting points. Specifically,

we hav JU—
bdB(r) NbdW C {t1,... ¢y} where Tet us construct another polyhedron, denoted g, H),

where the2-tuple (g, H) € RV~ x RIN-1Dx(N-1) js chosen

ti:—mhi, i=1,...,N—1, (70a) as
tn = ——HI. (70b) g1 =91 - Ne, (792)
[ H1] Gi=git+e i=2..,N—1, (79b)
if t; _ b}
Also, ift; € bdB(r) N bdW, then o (r+ ) H, (790)
—r[lhi| +g;: =0, ie{l,...,N -1}, T
—r|H1|+ (1-1Tg) =0, i=N; where
(71) —r||h] +
otherwise €= % >0, (80)
—r||hil| + gi >0, ie{l,...,N—1}, 5= € -0 81
{ e g 50, S8 ([l iy - G
(72)

The polyhedronP (g, H) is also an(N — 1)-dimensional
Proof of Fact 4: The proof of Fact 4.(a) basically follows simplex; this is shown by Fact 3.(b) and the fact that the rank

the development in [23, pp.148-149], and is omitted here fof H is the same as that di (which is full). Now, we claim

conciseness. To prove Fact 4.(b), observe that a ppist thatB(r) C P(g, H) andvol(P(g, H)) < vol(P(g, H)) =

bdB(r) N bdW satisfies i)||6|| = r; and ii) either vol(W). For the first claim, one can verify from (78)-(79) that
hi6 + g; =0, (73) —rhi]| 4+ G > (N = 1)e >0,
for somei € {1,...,N — 1}, or —rllhil| + g >0, i=2,...,N—1,

~ e = 1T 5
—(H1)T6+(1-1"g)=0. (74) r|H1||+(1-1"g) > € >0,

Suppose tha# satisfies (73). Recall that the assumptio}ﬁ’herehi andg; denote the‘_th column ofH qndith element_of .
B(r) € W implies g, resp. The above equations, together with Fact 4.(a), @sapli

thatB(r) C P(g, H). The second claim follows from (68) in

hTe +g; >0, forall @] <r, (75) Fact 3.(b) and (79c):
and that the left-hand side of (75) attains its minimum if and _ 1 r Nl 1
only if 6 = —(r/ |||k = t,. Thus, if (73) is to be satisfied,  “OUP(9 H)) = 557 (755 ) [det(H)]
then® must equak;, and subsequently (73) becomes 1
< 7||det(H)|*1 =vol(W), (82)

—r||hi|| + g: = 0. (76) (N —1)
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for N > 2 (note thatV = 1 is meaningless). The above two i) It holds true that
claims contradicts the assumption thtis an MVES ofB(r).

>0
Case 2: Suppose thaty ¢ bdB(r) N bdW. The proof o= Ok
is similar to that of Case 1. Very concisely, this case has
—r|H1| + (1 —1Tg) > 0 and —r||h;|| + g; > 0 for all 6 > 5
i € {1,...,N — 1}. By constructing a polyhedro® (g, H) b= (85)
where Sk1 < Okt1,
g=g-+el, H-= <r+5) H,
T SN < ON-

_ r|H1)+ (1 17g)

N , i) Sugpose tha2 <k < N—1,andN > 3. Thens satisfies

Dk 8 <l—a. _ .
ands is the same as (81), we show tat-) C P(g, H) and iil) For any s € U(«), the indexk must satisfyk > 2.

vol(P(g, H)) < vol(W). The above two claims contradict the V) @ — 9k >0 forany0.5 <o < 1.

MVES assumption with/. The proofs of the above properties are as follows. Property
The above two cases imply thatdB(r) N bdw = i) follows directly from the definition ofk and the ordering
{t1,...,tx}, the desired result. In addition to this, Propertff s. Property ii) is obtained by induction. Observe that if

(@) in Lemma 7 is obvious since the expressiontgs #+ <N —1, the last equation of (85) reads

in (70), as well as (67), already suggest the affine inde- 1—a

pendence ofty,...,ty. As for Property (b) in Lemma 7, SN <Oy = N —1 <l-a (86)
note that (71) are all satisfied. It can be verified that balnd fork — N
substituting (70) and (71) into (66))V can be rewritten as —
Ww=nk {6 RV |r?>1tl0}.

— 1 the proof is complete (trivially). Fok <
N — 1, we wish to show from (86) thaty 1 + sy < 1 — «,
and then recursivelyzjyzi sj <l—afromi=N-2to
i =k + 1. To put this induction into context, suppose that

E. Proof of Lemma 5 N
For notational convenience, denote j;l sj<l-a (87)
Ua)={seT.|si<a,i=1,...,N}, fori e {k+1,..., N—1}, and note that (87) already holds for

o i = N—1 due to (86). The task is to prove \_; s; < 1 —av.
and recall that the aim is to provenvP = U(a). The The proof is as follows:
above identity is trivial for the case af = 1, since we N N
have convP = 7. = U(1) for « = 1. Hence, we focus on
0.5 < a < 1. The proof is split into three steps. Zsj <ot Z 57

Step 1:We start with showing that € convP = s € o

(88a)
j=i+1

. N
U(c). Note that anys € convP can be written as _ 1 (1 1 Z s (88h)
1—1 1—1 S
=) _b;ipij, -
s =2 0ipi <1-a, (88c)

J#i

where (88a) is obtained by, < §; in Property i); (88b) by
éi_34); (88c) by (87), and — 1 > k£ > 1 for k > 2. Hence,
we conclude by induction that Property ii) holds. To prove
Property iii), note thats satisfies1”s = 1. Thus, s, can be
written as

for some {0;,} satisfying Z#i 0;;, = 1 and@;; > 0 for
all 5,4, j # i. From the above equation and the expre
sion of p;; in (42), one can verify thas € 7., and that
s < max;»;[pijlr < a for any k (here[p;;]; denotes the
kth element ofp,;). Thus, anys € convP also lies in/(«).
Step 2:We turn our attention to proving € U(a) = a
s € convP. To proceed, suppose thate /(«), and assume s2=1-s - Z 5i
$1 > s > ... > sy W.l.o.g. From a givers, choose an index =3

k by the following way Since everys € U(«) satisfiess; < « for any i, we get
N
= j . P >0,
kE=max{i € {1,...,N} | s; > 4;}, (83) 5221—@—25j=52.
whered, = 0, and J=3

N The above condition implies th&t > 2 must hold. To prove
l—a—-> . .5 i ing i iti
5, — - Zi_ZH e N (84) Property iv), observe the following inequalities
.
. . a—0>a— . > -
From (83)-(84), the following properties can be shown. k—1 k—1

— 200 — 1
> .
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here, the first inequality is done by applying (84), and theet s € R(r), and assume; > s; > ... > sy w.l.o.g. From
second inequality by: > 2. From the above equation, we se¢he above assumption, it is easy to verify that> % Also,

thata — ;, > 0 for a > 0.5. by denotingsa.x = [ s2,...,sn5 |1, we have
With the above properties, we are ready to show that 2 2 o 9
s € U(a) lies in convP. First, for eachi € {1,...,k}, we " 2 [lsll® =1 + H232:N||
1—
construct a vector > 24 (=) (92)
Ny N -1
pi= Z JiPij» where the second inequality is owing to the norm inequality
s S |z < v/nllz| for anyx € R™, and the fact thas > 0,
where 17s = 1. Moreover, equality in (92) holds i takes the form
¢, 1<j<kjti s =[ s, 5217 ]7 (which lies in7;). Hence,a*(r) can be
HJL_{ 15]-  k+1<j<N,N>3 simplified to
o N a*(r) = sup $1 (93a)
. L Dimhi15i\ Ok (1 - 51)2
k-1 11—« S l-a s.t.sf—i—ilgrz (93b)
N -1
It can be verified that;; > 0, Zj# 0;; = 1 (in particular, % <s <1 (93c)

Property ii) is required to verify: > 0); that is to say, every
p; satisfiesp; € convP. Moreover, from the above equationsBy the quadratic formula, the constraint in (93b) can be

p; is shown to take the structure reexpressed as
— —b) <
o (a — 0p)e; + 0l (89) (s1—a)(s1—b) <0, (94)
b= Sk41:N ’ where
wheresiy1.ny = [ Sk41,.--,5n |7. Now, we claim that 4o 1t VN =1(Nr2-1)
N Y
k
_ — 2 _
5= Bipi, (90) yo L= VIN-D(N2 - 1)
i=1 N
where From (93c) and (94), it can be shown that tgﬁ <r<l,
5;— 0k .
P = T < :17...,k'7 91
a a—o " O bg%gslgagl

and they satisfy) ;_, 8 = 1, g; > 0 for all i. The above Hence, the optimal solution to problem (93) is simply= a,
claim is verified as follows. The property; > 0 directly znd the proof is complete.

follows from Properties i) and iv). For the prope@f=1 Bi =
1, observe that
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